1624: 最短路模板题

内存限制:128 MB 时间限制:1.000 S 标准输入输出
题目类型:传统 评测方式:文本比较 上传者:
提交:38 通过:4

题目描述

给定一个 $n$ 个点,$m$ 条有向边的带非负权图,请你计算从 $s$ 出发,到每个点的距离。

数据保证你能从 $s$ 出发到任意点。

输入格式

第一行为三个正整数 $n, m, s$。
第二行起 $m$ 行,每行三个非负整数 $u_i, v_i, w_i$,表示从 $u_i$ 到 $v_i$ 有一条权值为 $w_i$ 的有向边。

输出格式

输出一行 $n$ 个空格分隔的非负整数,表示 $s$ 到每个点的距离。

输入样例 复制

4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4

输出样例 复制

0 2 4 3

数据范围与提示

数据范围

$1 \leq n \leq 10^5$;

$1 \leq m \leq 2\times 10^5$;

$s = 1$;

$1 \leq u_i, v_i\leq n$;

$0 \leq w_i \leq 10 ^ 9$,

$0 \leq \sum w_i \leq 10 ^ 9$。


请分别使用floyed、dijkstra、bellman—ford、SPFA四种算法实现,体会每种算法的时间复杂度和空间复杂度。